CORRECTION DU DEVOIR 10 : DIVISION DE POLYNOMES

TETHEORIE

Savoir énoncer l’égalité de la division euclidienne dans les polynômes :
A(x) = D(x) . Q(x) + R(x) où degré de R(x) < degré de D(x)

Savoir énoncer la loi du reste :
Le reste de la division d’un polynôme A(x) par (x-a) est la valeur numérique de ce polynôme en a.

Que doit-on chercher pour calculer le reste de la division d’un polynôme par x - a ?
Il faut calculer la valeur numérique de ce polynôme (le dividende) pour x = a.

Quand dit-on qu’un polynôme est divisible par x - a ?
Quand le reste de la division est nul, c’est-à-dire quand la valeur numérique de ce polynôme pour x = a est nulle.

Comment détermine-t-on les diviseurs possibles d’un polynôme donné ?
En calculant les valeurs numériques de ce polynôme pour les diviseurs du terme indépendant.

EXERCICES

1. Effectue les divisions de A(x) par D(x) :
A(x) = -27x^8 + 36x^6 - 9x^5 + 18x^4 et D(x) = -9x^2

\[
\begin{array}{c|cc}
\text{A(x)} & \text{D(x)} \\
\text{-27x}^8 + 0x^6 + 36x^6 - 9x^5 + 18x^4 & -9x^2 \\
\hline
\text{+27x}^6 + 0x^4 + 0x^2 & 3x^6 - 0x^4 - 4x^3 + 1x^2 - 2x^2 \\
\hline
\text{-9}x^6 & \text{reste} \\
\text{36x}^6 & \text{calcule} \\
\hline
\text{-9}x^5 & \text{évalue} \\
\text{+9}x^5 & \text{évalue} \\
\hline
\text{18x}^4 & \text{évalue} \\
\text{-18x}^4 & \text{évalue} \\
\hline
\text{-27x}^8 + 36x^6 - 9x^5 + 18x^4 = -9x^2 \cdot (3x^6 - 4x^3 + x^2 - 2x^2) & \text{(le reste est nul ; la division est exacte)}
\end{array}
\]

A(x) = 4x^5 - 2x^3 + x - 1 et D(x) = -2x^3 - 1

\[
\begin{array}{c|cc}
\text{A(x)} & \text{D(x)} \\
\text{4x}^5 + 0x^4 - 2x^3 + 0x^2 + 1x - 1 & -2x^3 + 0x^2 + 0x - 1 \\
\hline
\text{-4x}^5 + 0x^4 + 0x^2 - 2x^2 & -2x^2 + 0x + 1 \\
\hline
\text{0x}^5 + 0x^4 - 2x^3 - 0x^2 + 1x & \text{reste} \\
\text{-0x}^4 + 0x^2 + 2x^2 - 0x & \text{reste} \\
\text{-2x}^3 + 2x^2 + 1x & \text{reste} \\
\hline
\text{4x}^5 - 2x^3 + x - 1 = (-2x^3 - 1) \cdot (-2x^2 + 1) + (-2x^2 + x) & \text{(le reste est -2x^2 + x)}
\end{array}
\]

2. Pour les polynômes donnés,
 a) Calcule le reste de la division de A(x) par D(x)
 b) Effectue la division euclidienne
 c) Effectue la division en appliquant la grille de Horner
 d) Ecris ta réponse sous la forme A(x) = Q(x) . D(x) + R(x)

A(x) = 2x^2 + 3x - 5 et D(x) = x + 5

\[
a) \ A(-5) = 2 \cdot (-5)^2 + 3 \cdot (-5) - 5 = 50 - 15 - 5 = 30
\]
b) \[\frac{2x^2 + 3x - 5}{x+5} \]

\[\begin{array}{c|cc}
 x+5 & 2x^2 - 10x \\
 & \downarrow & \\
-2x^2 - 7x - 5 & \\
+7x + 35 & \\
\hline
 & -7x + 30 & \\
\end{array} \]

c) \[\begin{array}{c|c|c|c|c}
 & -5 & 2 & 3 & -5 \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
-5 & 3 & -10 & 35 & \\
2 & 0 & -7 & 30 & \\
\end{array} \]

d) \[2x^2 + 3x - 5 = (x + 5) \cdot (2x - 7) + 30 \]

A(x) = 2x^4 - 3x^3 - 5x^2 + 3x + 3 et D(x) = x - 1

a) \[A(1) = 2.1^4 - 3.1^3 - 5.1^2 + 3.1 + 3 = 2 - 3 - 5 + 3 + 3 = 0 \]

b) \[\frac{2x^4 - 3x^3 - 5x^2 + 3x + 3}{x - 1} \]

\[\begin{array}{c|cc|cc|c}
 x - 1 & 2x^3 - 1x^2 - 5x^2 \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
-2x^4 + 2x^3 & \\
+1x^3 - 1x^2 & \\
\hline
 & 0x^2 + 6x + 3x & \\
\end{array} \]

c) \[\begin{array}{c|c|c|c|c}
 1 & 2 & -3 & -5 & 3 \\
 \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 2 & -1 & -6 & -3 & 0 \\
\end{array} \]

d) \[2x^4 - 3x^3 - 5x^2 + 3x + 3 = (x - 1) \cdot (2x^3 - 1x^2 - 6x - 3) \]

3. Détermine les diviseurs possibles de A(x) puis effectue la division par Horner pour factoriser A(x).

A(x) = 6x^3 - 13x^2 + 4

\[\text{div} 4 = \{ \pm1 ; \pm2 ; \pm4 \} \]

\[A(1) = -3 \]

\[A(-1) = -15 \]

\[A(2) = 0 \]

\[6x^3 - 13x^2 + 4 = (x - 2) \cdot (6x^2 - 1x - 2) \]

A(x) = x^3 + x^2 - 14x - 24

\[\text{div} 24 = \{ \pm1 ; \pm2 ; \pm3 ; \pm4 ; \pm6 ; \pm8 ; \pm12 ; \pm24 \} \]

\[A(1) = -36 \]

\[A(-1) = -10 \]

\[A(2) = -40 \]

\[A(-2) = 0 \]

\[x^3 + x^2 - 14x - 24 = (x + 2) \cdot (x^2 - 1x - 12) \]

A'(x) = x^2 - x - 12

\[\text{div} 12 = \{ \pm1 ; \pm2 ; \pm3 ; \pm4 ; \pm6 ; \pm12 \} \]

\[A(1) = -12 \]

\[A(-1) = -10 \]

\[A(2) = -10 \]

\[A(-2) = -6 \]

\[A(3) = -6 \]

\[A(-3) = 0 \]

\[x^3 + x^2 - 14x - 24 = (x + 2) \cdot (x + 3) \cdot (x - 4) \]